Representing the Finite w-calculus in
Multi-Interaction Nets

Concurrency = Interaction + Non-determinism

Vladimir Alexiev*

615 GSB, Department of Computing Science,
University of Alberta, Edmonton AB T6G 2H1, Canada
phone (403) 492 3854, fax (403) 492 1071, email vladimir@cs.ualberta.ca

Abstract. We extend the Interaction Nets of Lafont (1990) with some
non-determinism capabilities, and then show how to implement the finite
monadic w-calculus in that system.

1 Introduction

The m-calculus of Milner et al. (1992) is one of the most popular theoretical tools
for the investigation of concurrent computations. Its popularity is due to its con-
ceptual simplicity, yet great expressive power. However, similar to the A-calculus,
the m-calculus leaves some of the basic low-level components of computation im-
plicit, namely the distribution of values and synchronization, expressed as the
global process of substitution. Uncovering this finer computational structure,
and dispensing with the important role that syntactic entities like names play
in w-calculus, is the goal of this paper.

Interaction Nets (IN) of Lafont (1990) are a novel model of parallel compu-
tation, simple and elegant. Their essential properties as relating to parallelism
are the locality of interaction and the simplicity of the rewriting process. We in-
troduce a version of IN extended with non-determinism (Multi-Interaction Nets)
and translate faithfully the m-calculus to MIN.

Our translation is similar to the m-nets of Milner (1994) and the Interaction
Diagrams of Parrow (1995), but we represent blocking (synchronization) in a
distributed manner, without using boxes. We also compare our construction to
the Concurrent Combinators of Honda and Yoshida (1994a).

2 Interaction Nets and Non-Determinism

Interaction Nets (IN) were introduced by Lafont (1990) as a simple and elegant
model of parallel computation, inspired by Linear Logic’s Proof Nets, and de-
signed to be useful both as an (abstract) programming language, and as a useful
intermediate representation.

* Supported by a University of Alberta Dissertation Scholarship.

INs are graphs consisting of nodes (agents) of certain types and undirected
edges connecting them. The points of contact of edges and nodes are called ports
and every node type has a particular signature of ports. In conventional INs
every node type has exactly one principal port (denoted with a bold triangle),
and every port hosts exactly one edge.

Computation in INs is governed by nteraction rules of the form

X1 Y1 Xl Yl

\/

node; | —p net |
nodes X Y
Xz Yz

Notation “Generic” node types are indicated with boxes. Whole subnets are
indicated with a large dashed boxes. The concrete node types that we will use
predominantly in this paper are indicated with ovals.

The left hand side (LHS) of a rule is a cut: two nodes facing each other with
their principal ports (which we often denote as node; I node;). The right hand
side (RHS) is a net containing any number of nodes, possibly none. The only
requirement is that the RHS should connect all free ends of the LHS, leaving no
loose ends.

If the LHS of a rule (a redex) is present in a particular net, then the LHS
can be removed from the net, and replaced by (rewritten with) the RHS. For
example, here are some simple list processing rules (append, and reverse using
an accumulator):

X Y E A
h /¢
h [t
(o) = = (o) (o) - - ()
T T T T

and the reduction corresponding to appending the lists (1,nil) and (2, nil) to
obtain the list (1,2, nil):

Interaction Nets are a restricted form of graph rewriting enjoying some nice
properties:

Binary Interaction Only two nodes participate in a single rewriting step.

Simplicity It is easy to apply a rule, because the application is uniform.

Locality The applicability of a rule is determined by local inspection, and the
effect of a rule is a local modification of the net.

Furthermore, conventional INs are (trivially) confluent because of the fol-
lowing properties:

— A redex consists of only two nodes and their connecting edge.

— A node has only one principal port, therefore can participate in at most one
redex.

— Reduction is completely local in that it only changes a redex, but leaves the
rest of the net untouched.

— There is only one rule matching a given redex.!

Therefore every two redexes are necessarily disjoint, and no critical pairs are
possible. This, together with the locality of interaction, means that the reduction
of a given redex can never preclude the reduction of another redex, therefore the
two reductions can be done in either order, or in parallel. This implies a strong
form of confluence, the diamond property in single-step reductions:

R
YN — L vN,
R, R,

VYN, —L 37

L If the redex is symmetric (consists of two nodes of the same type) then the RHS of
the rule must also be symmetric, so that no matter how the rule is instantiated, the
outcome is the same.

Not only all normalizing reduction sequences lead to the same result, but they
even all have the same length. Every net can evolve in essentially only one way.

2.1 Non-Determinism

The strong confluence of conventional INs account to a large extent for their sim-
plicity and attractiveness, and for some of their deeper theoretical aspects such
as deadlock-freeness of certain syntactically-identifiable fragments. However, it
also means that IN cannot be used to model and implement non-deterministic
systems such as concurrent object-oriented systems or the m-calculus. In such
systems an object/agent/process typically can be connected to more than one
other agent, and the interaction with one of them may well preclude interaction
with others. For example, consider the process cla, clb, ¢?2.P.2 It can reduce to
either ¢!b, Pla/x] or ¢la, P[b/x] which are not equivalent if @ and b are different
names.
We therefore introduce an extended version of IN that we call Multi-Interaction

Nets (MIN), in which a node may have more than one principal port, and a port
may have zero or more edges, if it has been designated as a multiport.

another . . multiport with

normal .. . another multiport with
principal multiport . .

port port connection no connections

at least one
connection

principal principal
port multiport

We can represent typical object-oriented notions such as state change like
this:
s

S S S D

S S S S
@@0@@ (Cvar)
(eet) v () sow
m/d M d
M D M D

G (=)
d ml d

My D1 M, D,

Here var accepts get/set requests from its principal (message) port, and stores
a private state at its s port. The request nodes get and set have a port d for
the data item and another port m for the next message to the same “object”.
(The eraser € and duplicator ¢ are standard IN components.) The evolution of

2 See §3 for the m-calculus notation that we use.

a var that has two competing requests (as shown in the RHS of the figure) may
depend on the order in which these requests are served.

There are several ways of introducing non-determinism in IN, which I explore
in my forthcoming PhD dissertation. For this paper we will use INs extended with
multiports as introduced above (INMP), and will also allow multiple principal
ports per node (INMPP). Here is an example of an INMPP:

- |-

X
T
Capturing INMPP in INMP As will be seen later, we find it very convenient to
use multiple principal ports in our translation of the m-calculus, because of the
ability of INMPP have a node be attentive towards several ports simultaneously.
We note briefly that it is in fact possible to reduce INMPP to INMP, by splitting
a node with more than one principal port in parts. For simplicity, we show here
the case of two principal ports. Let a be a node type with two principal ports y

and z and let its reductions with different node types b; be given by the rules
N

Y [z | J —
° - l noj |
X Z/r \Y

where the auxiliary markers a; and a; are governed by the rules

Y

By the above construction, we could limit our version of IN to INMP only (not
INMPP). But for simplicity, we will use INMPP too, and we call the combination
MIN=INMP+INMPP.

2.2 Special Rule Selection

Rule selection in conventional IN is quite simple: only one rule may apply to a re-
dex, and a node may be involved in only one redex. Rule selection in MIN is more
complicated. First a principal port of a node 1s chosen non-deterministically. If
it is a multiport then one of its edges is chosen non-deterministically. If the other
end of the edge is a principal port, then there may be several rules matching the
redex.

In order to accommodate the need for special clean-up rules, we allow to fur-
ther qualify the rules by constraints on the current arities of ports.> We consider
the following constraints (see the figure in the beginning of §2.1):

e no constraint o zero edges? x at least one edge.

The rule satisfying the largest set of most-specific constraints is chosen (the
specificity ordering being ¢ < o, e < x}). We will use only rule sets that are
well-ordered by specificity. For an example of the use of such special rules, see
§4.8.

A MIN rule can only specify the evolution of a finite number of edges, but
the total number of edges on the LHS is not bound a-priori, if the LHS contains
multiports. Therefore, it is implied that any edges not specifically mentioned in
the LHS are transferred en-masse to ports of the same name on the RHS. For
example, here the edge X—a.x of the LHS is explicitly transferred to X—b;.z of
the RHS. In addition, all other potential edges connected to a.x are transferred
to ap.x, those of a.y to aj.y, and those of b.z to by.z.

® Not necessarily the principal ports involved in the cut.
* Obviously the principal ports involved in the cut have at least one edge, so the
constraint means “one edge” if it is applied to such a port.

3 The w-calculus

In this paper we consider the finite part of the monadic w-calculus (i.e. no choice
and replication).® Let a,b, ..., z,y,...stand for channel names. Then processes
P,Q,...are defined inductively as follows

Zero 0 is the empty (do-nothing) process.

Parallel Composition P, () behaves as both P and), possibly interacting
with each other.

Output Prefix clv.P% sends the value v along the channel ¢, then behaves as
the process P.

Input Prefix ¢7z.P receives a value from channel ¢, then behaves as the process
P, wherein the value is substituted for x.

Hiding/Restriction (c)P is just like P, but the channel ¢ is hidden: no values
can be sent/received over that channel by other processes.

In clv and ¢7v, ¢ is in subject position, while v is in object position. We will
sometimes denote a prefix as m. We abbreviate 7.0 to simply 7. Free and bound
names are defined as usual (z becomes bound in ¢?z.P and (z)P). al(z).P is
used as an abbreviation for (z)alz.P.

3.1 Structural Congruence

A natural way to simplify the presentation of the reduction system of the -
calculus (see below) is to introduce structural rules which describe equivalence
classes of process terms that are essentially the same, and only differ in their
syntactical presentation. = is the smallest congruence satisfying the rules below:

1. P = P[y/z]” if z is not free in P and y is fresh (a renaming). We will
tacitly assume for the rest of this paper that every bound name is different
(renamed apart) from every free name and from all other bound names.

® Please note that e.g. Honda and Yoshida (1994a) take a similar approach, and later
develop their combinatory system to accommodate these elements in (Honda and
Yoshida, 1994b).

% We use this Occam-like notation instead of the conventional notation ¢(x).P, mainly
because it is more clear in the typescript.

" Here [y/«] denotes the substitution of y for «.

2.0,P=P;P,Q=0Q,P;(P,Q), R= P,(Q, R): the parallel constructor makes
a commutative monoid.

3. 0 = (2)0: there is nothing to hide in 0.

4. (£)P,Q = (2)(P, Q) if x does not occur in @: the scope of a restriction can
be extended if there’s nothing to hide. This also implies that @ = ()@ given
the same proviso.

5. (z)(y) P = (y) () P.

By the last three rules, we can assume w.l.o.g. that all restrictions are pushed
out to the top level.

3.2 Reduction Rules

We use an (unlabeled) reduction system for the m-calculus, because we find it
more natural for our correctness proofs below than a labeled transition system.
It is the smallest relation — closed under the rules

Comm a?z.P,alc.) — Plc/z], @: this rule, analogous to S-reduction, is the
essence of the m-calculus. It allows a process to communicate a name to
another process.

Struc If P - @ and P = P, Q = @' then P’ — ’. This incorporates the
structural congruence into the reduction relation.

Par If P — @ then P, R — @, R: adding a parallel component does not decrease
the possibilities for reduction.

Res If P — Q then ()P — (2)Q: restriction does not decrease the possibilities
for reduction of the internal process.

def

Multi-step reduction is defined as = = 5 U

3.3 The Many Roles of Prefix

The Comm rule plays several important roles that we would like to implement
in IN as independently as possible:

Value passing The value ¢ is delivered from the sender to the receiver process.

Value distribution If the input variable x appears in several places in the
receiver P, the value ¢ should be delivered to all these points.

Synchronization Reduction is not a congruence over prefix, so the prefixed
process(es) cannot perform any other action before the outer communication
is complete.

The prefix blocks any possible interactions inside the prefixed process, as well as
interactions between it and other processes. Synchronization in the m-calculus is
global with respect to the prefixed process. We will see below that our translation
into IN implements synchronization in a distributed manner.

4 Representing the w-calculus in MIN

Our motivation for attempting to represent the m-calculus in MIN is threefold:

— To test the expressive power of an extension of IN that we found interesting
for other purposes as well (e.g. concurrent object-oriented programming).

— To represent explicitly some aspects of the dynamics of computation of the
n-calculus that are left implicit by the standard formulations (substitution).

— To capture the mobility features of the m-calculus in a finitary (name-free,
combinatory) framework.

We first introduce some basic building blocks for representing the m-calculus (we
call the particular MIN instance MIN,), then give a translation [-] from 1T to
MIN,, and finally sketch some correctness results about the translation.

4.1 MIN, Nodes

The node types of MIN, are classified as primary (those that can appear in
the translation [P] of a process) and auziliary (used only during intermediate
computation steps). The main nodes are:

D, D!
A brief description of the main nodes follows:

channel ¢ corresponds to a m-calculus channel name. Its output multiport o con-
nects it to all channels z for which ¢ is an output object. The send multiport
s connects it to all nodes x that are output objects of ¢. The committed mul-
tiport ¢ is similar to s, but it holds only output objects x for which we are
certain that they are ready to be sent. The receive multiport r connects ¢ to
all nodes y that are input objects of c.

placeholder p & corresponds to the bound variable in a m-calculus input prefix, ¢.e.
it is the input object of some node. Its ports are similar to the ports of ¢, but
you will notice that its only principal port is input i, because p cannot interact
until it has been instantiated with a channel in a communication. It also has
an unblock port u that sends a signal to certain blocking (synchronization)
machinery that 1s dependent on the prefix.

® This term comes from (Parrow, 1995).

blocker b is part of the synchronization machinery. It will shortcut its data ports
when it receives an unblocking signal on its principal port.

unblocker u will also shortcut its data ports dy and dy when the time is right,
and will unblock all blockers that are attached to its u port.

b;
o5 . 05 ¢ . b
b u;
They are mostly used as intermediate states in the evolution of main nodes (and
thus serve to sequentialize this evolution).

We also use auxiliary nodes of the following types

4.2 Labels

Instead of denoting channel and placeholder nodes with their node types ¢ and
p, we label the nodes with the m-calculus names that they correspond to, e.g. we
draw a ¢ node labeled a as an oval containing a (the port types will always allow
us to determine the node type unambiguously), and denote it in text as c[a]. If
a name 1is hidden in a w-calculus process, we place the label in parentheses, e.g.
p[(x)] or no label at all. (For brevity, we don’t always parenthesize placeholder
labels, which should always be considered hidden). These labels have several
uses:

— As a convenience for the reader.

— The incremental building of a net during the translation process uses the
labels to decide which nodes to merge.

— They make finer distinctions between nets, so that e.g. the nets correspond-
ing to alb and alc are considered different, even though they are graphically
the same.

However, the labels play no role in the MIN, reduction process.

Definition 1 (Labeled MIN, isomorphism). Two MIN, M and N are
called 1somorphic, M &~ N, if there is a graph isomorphism between them that
also respects the node labels (hidden/placeholder labels are excluded from this
distinction).

4.3 The Translation

We define a translation function [-]: IT — MIN, from m-calculus processes P to
MIN, nets N (i.e. N = [P]). Simultaneously with it we define a set of blocking
points B[P], which are (“the middles of”) edges of N. As explained in §4.2, ¢

nodes of [P] bear labels throughout the translation process; but these labels do
not influence the MIN,. reduction process. Let n(N) and e(N) denote the nodes
and edges of N, and n(M) + n(N) denotes amalgamated sum, where nodes in
n(M) and n(N) with the same label are identified. We also write N = (n, e) for
n=n(N), e =e(N).

We define the translation by induction on the structure of P (§3), but make
a distinction between atoms 7.0 and proper prefixes 7.P.

Zero [0] = (0,0) and B[0] = 0.

Parallel Composition [P, Q] = (n[P] + n[Q], e[P] U e[Q]) and B[P, Q] =
B[P]U B[Q]. Nodes of the same label are identified, and their edge sets are

merged, but no edges are identified.

Hiding/restriction [(¢)P] = [P]\c ([P]\c is the same as [P], but the label
of node ¢ (if any) is erased/parenthesized). B[(¢) P] = B[P].

Input Atom [a?z]?= ({c[a], p[(x)]}, {a.r—x.i}) (channel, placeholder, and an
edge connecting their r and i ports respectively). Bla?z] = {a.r—x.i}.

Output Atom [a!2]'%= ({c[a],c[x]}, {a.s—x.0}) (two channels and an edge con-
necting their s and o ports). Blalz] = {a.s—x.0}.

Input Prefix [a?p.Q] is defined from [Q] thus (see the right half of the figure
below):!!

1. If a channel node labeled a is not present in [Q], a new channel a is

added.

2. If a channel node labeled p is not present in [@Q], a new placeholder p is
added. Otherwise, p’s type is demoted from channel to placeholder. (In
this latter case, effectively the placeholder p is merged to a channel in
[@], in contrast to the Parallel Composition case above.)

3. A new edge a.r—p.i is added.

4. Blockers b are inserted in every edge of B[Q] and their principal ports
are connected to p.u.

More formally, n[a?p.Q] = (n[Q]+c[a]4+p)\\PUU. ¢ spqp be Where n\\p s like
n, but with the type of node p demoted from channel to placeholder and its

label erased. e[a?p.Q] = e[Q]U{a.r—p.i}UlU.w(1, nayespgr {P-U—be, be.di—n1, be.do—na }.
Finally, Bla?p.P] = {a.r—p.i}, and the fact that it is a singleton set is the
key to the polynomial nature of our translation.

® More precisely, [a?z.P] where P = 0.

19 More precisely, [a's.P] where P = 0.

' Please imagine that a and ¢ can potentially be immersed in [P], and a and p can be
immersed in [Q].

'l al |

N
|

Output Prefix [alc.P] is defined similarly, but an extra node u is added, be-
cause ¢ may be the output subject of more than one prefix (see the left half
of the figure):

1. New channels a and ¢ are added if not present in [P].

2. An unblocker u 1s added.

3. New edges a.s—u.d; and u.dy—c.o are added.

4. Blockers b are inserted in every edge of B[P] and their principal ports

are connected to u.

More formally, n[ale.P] = (n[P] + c[a] + ¢ 4+ u) U U, ¢ppy be- elale.P] =
e[PJU{a.s—u.dy,c.o—u.da} U Uem(nl,nQ)eB[P]]{”'”_be’ be.di—ny, be.dy—no}.
Blale.P] = {a.s—u.dy}

Proposition 2 (Complexity of the Translation). The size of [P] (number
of nodes plus number of edges) is linear in the size of P (number of prefizes).

Proof. A simple structural induction, based on the fact that |B[P]]| is equal to
the number of top-level parallel components of P. a

4.4 Structural Correspondence

Notation We call nets N = [P] primary, and nets that don’t correspond to
a process auziliary. (We only consider auxiliary nets that are the reducts of
primary nets in this paper.)

We now check statically that our translation neither identifies processes that
are not structurally equivalent, nor fails to identify equivalent processes.

Theorem 3. [P]~ [Q] iff P = Q (= as per Definition 1).
Proof. If Case analysis on the definition of structural equivalence in §3.1.

1. a-renaming. Since the bound labels of P are removed in [P], we have [P] ~
[Ply/]] for any name « not free in P.

2. Monoidal structure of parallel composition. Easy, due to [0] = (#,%) and
the associativity and commutativity of amalgamated sum n; + ns and union
€1 U €2.

3. — 5. are obvious.

Only if We build an inverse translation [N[and we prove that it preserves
structural congruence (see below). O

4.5 Inverse Translation

We define an inverse translation | - [: MIN, — [T/= from primary nets to a
representative of the structural equivalence class of the original process, [N[= P.
It breaks a composite net into parallel components, strips prefixes and associated
blocking machinery, and works recursively.

As a preliminary step, we take care of hidden nodes: [N[= (e1...cn)]N'[
where ¢; .. .¢, are all the c nodes of N with hidden labels, and N' is like N but
with these labels un-hidden.

We are careful to define N[to be deterministic, so we first find exhaustively
all parallel components. A blocking region b of a main net N is a minimal non-
empty set of directed edges e C e(N) closed under a “principal domination”
condition: if y.q—x.p € e is an edge of N that comes into the single principal
port p of node x'? then x.pi—y;.q; € e for all other edges of x. By minimality, a
blocking region b either consists of one edge both ends of which are not single-
principal ports, or is a tree of edges related by principal domination. In other
words, b cannot contain unrelated edges.

Lemma 4. Two blocking regions by and by are either disjoint or one is a subset
of the other.

Proof. Assume the opposite. Since by and by are trees, by following non-shared
edges we can reach a shared edge. The source node x of that shared edge must
have two incoming non-shared edges, one in by and the other in by. But this is
impossible, because x cannot have multiple principal ports, nor principal multi-
ports. O

Lemma 5. Let M be the subgraph of N generated by a blocking region b of N
(M contains all edges in b and their adjacent nodes). Then M is a main net.

Proof. Follows from the principal domination closeness of b, after observing that
all edges of [P] in [ale.P] and [a?p.P] can be reached from a.s—u.d; and
a.r—p.i respectively (see the figure in §4.3). This observation can be proved easily
by induction on the structure of [P]. O

Let B = {b1,...,b,} be the set of all maximal blocking regions of N. By
lemma 4 and maximality, they partition the edges of N: e(N) = by + - 4 b,.
By lemma 5, they all are main nets: b; = [N;]. So we define the first step of our
inverse translation (breaking into parallel components) thus: if N has more than
one maximal blocking regions {b1,...,b,}, then

IN[ETN, - TN

12 This means that x is one of p,b, u but not ¢, since ¢ has several principal ports.

where N; is the subgraph of N generated by b;.

To define the inverse translation of a maximal (“main”) blocking region b,
we have to consider two cases:

1. b consists of a single edge. The edge can be c[a].s—c.o or c[a].r—p.i. Then
]]b[[d:ef alc or]]b[[d:ef a?p respectively.

2. b is a tree of several edges. Then it has a single root edge, for otherwise the
root edges would be unrelated. Furthermore, b must correspond to the left

or the right half of the figure in §4.3, because it is main (subgraph of a main
net N = [R]).

(a) The root edge is c[a].s—u.d;. Then]]b[[d:ef alc.] Pi[where P is the subnet
connected to the b nodes (labeled [P] in the figure).

(b) The root edge is c[a].r—p.i. Then]]b[[d:ef a?p.]Q), Q5[where @y is the
subnet connected to the b nodes (labeled [@] in the figure), Q2 are

optional subtrees of b attached to the s and r ports of p, and Q' is like
1QI, but with the type of p promoted to c.

The proof of Theorem 3 is completed by the following lemma.
Lemma 6. If two main nets are isomorphic, M ~ N, then |M[=]N].

Proof. By isomorphism, the blocking regions of M and N are also isomorphic.
Then by the determinsm of | - [, it follows that |M[and N[are essentially
the same, up to a-renaming of hidden labels. a

4.6 Example

In order to clarify our translation, we give a substantial example, the Honda-
Tokoro construction. It implements polyadic (n-ary) blocking prefix in terms
of monadic (1-ary) output atoms and monadic input blocking prefix. It is also
known as the zipper construction. For n = 2, the construction is as follows:

2Nerwa]. P = (m)ztm, m?py.(p1ler, m?ps.(palas, P))

2?hy2].Q = (cie2)zn.(nley, e1yr.(nlea, e27y2.Q))

The translation of [2![z122]. P, 27[y1y2].Q] is on the left side of the figure below.
Note that we don’t need any u nodes since there are no output prefixes.

Apart from the blocking machinery needed to sequentialize the interactions
pi M ¢ (¢ =1,2) on the shared channel m X n, the construction is symmetric.

Unnecessary Blocking Due to the linear nature of w-calculus terms, one is
forced to introduce more blocks than are really necessary. Let’s consider the
dependency relation < between prefixes in a process P, which is the transitive
closure of the following rules:

1. If 7.Q) is a subterm of P then m < 7’ for every 7’ occurring in @ (blocking;
explicit synchronization).

2. a?x < {blz, x!b, 27b}13 for those of the prefixes that occur in P (provision;
data-dependency-based synchronization).

'3 Here 7 < S means = < «’ for every 7’ € S.

Since the m-calculus only allows disjoint or properly nested scopes, but not over-
lapping scopes, the structure of < is a directed forest. For example, it is impos-
sible to have m; < m and w3 < 7 without also having 71 < w2 or my < m. Fur-
thermore, since the scopes of input prefix and synchronization are confounded,
1 subsumes 2.

There are no such limitations in our MIN, representation, which allows us to
minimize the use of blocks. For example, the only blocks that are necessary in the
Honda-Tokoro construction are blocks that enforce m?p; < m7ps, nley < nles,
palea < P and ca?ys < @, therefore we can easily remove 5 blocks. (See the right
part of the figure above.)

4.7 Send/Receive

We now describe the interaction rules that govern MIN,. Communication is
implemented in three discrete steps, corresponding to the different roles of prefix
that we mentioned in §3.3:

Send/Receive A pair of s/r links of a channel ¢ is chosen non-deterministically,
and the objects at the ends of these links (say x in alz and y in a?y) are put
in contact.

Input/Output (Link Migration) All links of the placeholder p are trans-
ferred to the channel ¢ that is instantiating it.

Unblocking The processes that were blocked by the two prefixes (e.g. P and
@ in a?p.P and ale.)) are unblocked and can interact further.

In the first step, a channel ¢ that has active’® nodes attached to both its s
and r ports, shortcuts them in order to make it possible for them to interact.
MIN, does not give us easy means to secure two active nodes atomically. The
casiest would be to employ a ternary rulet®

However, IN and MIN, allow only binary rules.

Therefore we have to do it in two separate sub-steps, which may be distant
in time. In the first sub-step channel ¢ secures an active node from port s and
stores 1t in the set of committed output objects on port c¢. In the second sub-step
it puts an active node from port r in contact with an edge from port c. Both
edges are selected non-deterministically.

x
CasS @S
r r
() = ()

' Linked to ¢ through their principal port.
15 Remember that boxes denote generic node types.

The correctness of this switcheroo depends on the following

Lemma 7 (Monotonicity of Activation). Once a node on c.s becomes active,
it cannot become inactive until it is transferred to c.c, and later detached from c
by the above rule.

Proof. Examination of the possible node types and applicable rules later in this
section. The possible nodes on c.s in a translation [P] are u.d; (active), c.o
(active) and b (inactive). The rules that affect c.s are immigration of links from
p.s (see §4.8) which are again nodes of the same types, and the removal of b
during unblocking (see §4.9) which exposes an active u.dy or c.o. Once a link
1s active, it can only be transferred to c.c where it will remain active until it is
detached by the second rule above. a

4.8 Input/Output (Link Migration)

The second step of a communication ale. P, a?p.Q) is the merging of the output
object node ¢ and the input object node p, corresponding to the w-calculus
substitution Q[e/p] (¢ is instantiated for p). In MIN,, this entails a migration
of all edges of p to c. Since ¢ may be output object of more than one output
prefix, if it keeps its type ¢ during the immigration process, it may be subjected
to another send-receive interaction while the first one is in progress. Then ¢
may immigrate links from another placeholder p’, and therefore will interlace
link immigration from two different placeholders. Such interlaced immigration
increases the parallelism of the implementation, and should therefore be seen as
a positive aspect. However, in this paper we prefer to disallow it, in order to
simplify the proof of correctness of our translation. To this end, ¢ changes its
type to ¢; throughout the immigration process. ¢; is committed to that process
and cannot perform any other interaction until it is completed.

R
r
i

O S R

Here we use arity constraints (see §2.2) to guide the migration process. After mi-
gration is finished, the placeholder p becomes an unblocker u; and ¢ becomesc;,
waiting for a signal from u; that unblocking is completed (described in §4.9).

Lemma 8 (Confluence of Migration). 1. The rules of this subsection are
confluent (as formulated at the end of §2). 2. There is no outside interference,
1.e. after the initial interaction ¢ X p and until the final interaction ¢ X p, no
other nodes but the ones above can participate.

Proof. Simple. Both ¢; and p have a single principal port, and any two link
migration rules commute. a

4.9 Blocking and Unblocking

The send /receive rules of §4.7 are insensitive wrt the type of the object, therefore
they apply equally well to ¢ M p (corresponding to an output atom alc interacting
with an input ¢?p.Q), and to u X p (corresponding to an output prefix ale.P
interacting with an input a?p.Q).*® The case ¢ X p was described above in §4.8.
In the case u X p, u migrates all its blocking links to p and then disappears:

U Dy
u u d2
Q
(D =) ()=
d d d i
i i i
ONEONONE
u u
U

Once this migration is completed, a ¢ X p redex results, and the rules of §4.8
apply.

To complete the communication we must unblock all blockers b controlled
by the prefix. More specifically, the node u; that was borne by the placeholder
p in §4.8 should dismiss all the blockers that it controls.

16 Note that if we limit our consideration to the v (asynchronous) calculus where
output prefix is not allowed, then we don’t need u.

B

b oscr csr
E) - @ - ®E —
u u u® b b of
b
(&) = ()

D, D, D, — Di D, D, D, — D

At the end of the unblocking process (directed by the arity constraint on the
principal port), uy turns into up and signals ¢; that the communication has been
completed.

Lemma 9 (Confluence of Unblocking). 1. The rules of this subsection are
confluent. 2. There is no outside wnterference.

Proof. Simple examination. Only u; has a principal multiport, but the order in
which it dismisses b nodes is irrelevant. a

The lemmas in this and the previous subsection mean that after the non-
deterministic selection of a c.o link, computation can proceed in essentially only
one way, giving us the following aggregate result.

Lemma 10. In the figure below (with any number of b nodes attached to u and
p, and any number of O,S,R links), the MIN, on the LHS can reduce in only
one way, to the MIN, on the RHS. a

S R By — Bn

o] S R Ba, B1, By — B

This completes the description of the MIN, interaction rules.

4.10 Operational Correspondence

We now set out to prove that our translation serves its purpose of faithfully
modeling the m-calculus. Completeness is easy, as 1s to be expected of any decent
implementation encoding.

Theorem 11 (Completeness). For every single-step process reduction P —
P’ there exists a corresponding multi-step net reduction [P] = [P’].

VP ———— VP

V[P] —— 3[P]

Proof. Case analysis on the reduction rules in §3.2. For Comm, we use Lemma 10:
starting from the net in §4.3, after the s and r links on a are committed, there is
a (unique) reduction which removes all b and migrates the links of p to ¢, which
is the same as [P, Q[c/p]]. For Struc, we need Theorem 3. Par and Res (top-level
name restriction) do not decrease the possibilities for MIN, reduction. a

As is usual with implementation encodings, Soundness presents a greater
challenge. We have gone to great lengths to make the reduction process as de-
terministic as possible. For example in §4.8 we could increase the degree of
parallelism by leaving ¢ with the same type throughout the process, instead of
sequentializing it using ¢; and c,. However, until some general results about par-
tial confluence of MINs are available (or coinductive techniques for IN are better
understood, (Ferndndez and Mackie, 1998)), we prefer to simplify the reduction
process in order to obtain more easily our correspondence result.

We state the following

Theorem 12 (Soundness). (a) For every multi-step reduction [P] = N there
exists an extension N = [P'] such that P = P'.

VP ap’

v[P] VN ——— 3[P1]
(b) For every [P] = [P'] holds P = P'.

We will explain the = symbol below.

Note that 12.(b) alone is not sufficient to guarantee well-behavedness, because
it leaves the possibility of bad reductions from [P] that never lead to a primary
net.

Unless we impose some restrictive reduction strategies on net reduction, we
cannot prove a similar result for single-step process reduction. The reason is
that we are implementing an “atomic” reduction relation with a completely
distributed system. [P] can start reducing several independent reductions of P
simultaneously (or interleaving them), and none of the intermediate nets will be

primary. The theorem states however that no matter how long this net reduction
is, it can always be completed to a primary net [P’] such that P = P’

In order to prove the theorem, we explore the space of reducts of [P] and its
confluence properties. According to §4.3, the possible redexes of [P] are of the
form c.s X c.o, c.s X u.dy and c.r X p.i. According to §4.7, the former two cause
c.o/u.dy to be transferred (committed) from c.s to c.c, at which point the latter
redex becomes applicable. We will call ¢ nodes with something on c.c commutted
channels.

A committed channel with a p.i on its c.r port may choose to shortcut one
of its commitments with p.i, and become non-committed if it has no more com-
mitments, or stay committed. Lemma 10'7 applies to the redex formed of the
commitment and p.i, so we may reduce it immediately to the RHS. This will
unblock the subordinate processes of ¢ and p (if any) as well, and leave us with
a an almost primary net, one that may eventually contain committed channels.

Thus, it turns out that the structure of the reduct space is quite simple:

— It may contain channels in various stages of commitment.
— It may contain parts that are in the process of link migration and unblocking,
but by confluence we can complete the process in essentially only one way.

Notation Given a net M | its completion N is obtained by firing all possible
rules of §4.8 and §4.9. We denote this as M > N. Lemma 10 guarantees that
the completion is unique.

There is a little technical problem with commitment. Take the simple net
corresponding to clv. In that net v is attached to c.s. The commitment rule
may move v to c.c, but this is not a primary net anymore. And since there is
no possibility for communication, it cannot evolve at all, and will remain non-
primary. We therefore consider backing up commitments.

Notation Given a net M, its uncommitment N is obtained by moving any
links from c.c to c.s, for all channels c. We denote this M < N. We define
2 = = <. This is an operation external to MIN; a net itself can never back up
a commitment.

Neither > nor < make any decisions. The former forges ahead completing all
communications that have been committed, the latter removes commitments to
allow us to evaluate what we have.

As for 12.(b), we can prove it by tracing where commitments are consumed,
completing at these checkpoints, and relating the result to single-step process
reductions.

5 Related Work

The only work which deals with an application of MIN to a process calculus that
we are aware of is the unpublished paper (Gay, 1991). It translates a confluent
fragment of CCS into INs. The restriction to confluence is not arbitrary, it is
due to the essential confluence of conventional IN (see §2.1).

17 Or an analogous lemma without u, and a direct ¢ M p cut instead.

5.1 w-nets and Interaction Diagrams

Since the very inception of the w-calculus, Flow Graphs were sometimes used to
represent it graphically (Milner et al., 1992). More recently, two other graphical
formalisms were introduced, w-nets (Milner, 1994, 1993) and Interaction Dia-
grams (Parrow, 1995). Our translation is quite similar to these constructions,
but we also implement synchronization in a distributed manner, only using local
interaction. Our construction is more similar to INs because nodes have separate
ports and we use only dyadic interaction.

These formalisms give additional insights into the finer computational struc-
ture of the m-calculus, but still leave some of the computational structure im-
plicit and use names essentially. Namely, they represent prefix through the use
of boxes (non-local computation elements). Nodes bear the names/numbers of
the m-calculus names they represent, and communication manipulates these
names/numbers “at runtime”.

(Parrow, 1995, sec. 10) suggests that synchronization may be implemented
locally by increasing the arities of every channel, but unfortunately the sketch
given appears to be incorrect (or correct for only a limited setting). The author
proposes to implement a?x.P by adding a control channel b to every output
prefix dly appearing in P, and making a?x instantiate these channels when it
reduces. Input prefixes d7y also get an auxiliary channel, but it 1s not “hooked
up” to a7, its purpose only being to match the control channel of dly. This in-
deed stops internal communications of d7y, but it does not stop communications
with the outside of P. Therefore the construction only works if all subjects in P
are private channels. Nor will it be correct to block all interactions on d, because
in a?x.(dly, d?y),d'z,d?z, the prefixes d!?7y must wait, but d!7z may proceed.

5.2 Concurrent Combinators

More recent is the work on Concurrent Combinators (cc) (Honda and Yoshida,
1994a,b), which “analyzes away” the prefix constructions of m-calculus (input,
output and replication prefix) and represents all of their expressive power in a
finite system of atomic combinators. This work does the same for the foundations
of concurrent computation as the work of Curry et al. does for the foundations
of sequential functional computation. A graph representation of the same system
is developed in (Yoshida, 1994) and is named Process Graphs (PG).

cc gave us a big inspiration for the present work. They can be seen as a dual
graph representation of our construction. For example, where MIN, represents
alb as two nodes a, b and a connecting edge, cc represents the same process as
one message node M (a, b) with two links a, b. However, we perceive the following
shortcomings of cc and try to address them in this work:

— cc are more complicated since they use “aggregate” nodes, i.e. nodes corre-
sponding to a configuration of m-calculus channels. For example, they have
a node S(u, v, w) corresponding to u?z.v7y.wly. The genesis of the combi-
nators and the corresponding rules is not obvious, and the proof that the

set of combinators is closed wrt process constructors is highly non-trivial. In
contrast, our (main) node types correspond directly to m-calculus channels
and some blocking machinery, and our rules come naturally.

cc are inspired by combinatory term rewriting rather than graph rewrit-
ing. As a consequence, shortcut edges are not allowed in the RHS of rules.
For example, the typical IN rule corresponding to a first-order rewriting
@(Av.b,e) = bla/v] is not allowed in cc.

v B v

o
OF

T T

Therefore one is forced to use forwarders whose role is purely bureaucratic:
to disappear when a message arrives at their primary port, connecting it
to their auxiliary port. Notwithstanding their trivial nature, effort has to
be expended for their bookkeeping. Furthermore, one doesn’t always have a
term reduce to the “expected” term, but has to be content with a reduction
up to a certain simulation relation = that effaces forwarders (see e.g. (Honda
and Yoshida, 1994a, Theorem 4.4)).

The translation of m-calculus into cc is asymmetric, using only one construc-
tor (the message) and several destructors that come from the input prefix.
The use of forwarders only makes this asymmetry stronger. We believe that
a large part of the complexity of the translation can be attributed to this
property, and that a more symmetric translation results in a simpler, or at
least more natural, translation.

The translation from m-calculus to cc is not uniform in that [P, Q] intro-
duces some extra machinery (a duplicator D whose role is to multiplex an
unblocking signal to the two components), and [0] # @.

The translation can be exponential. For example, the translation of

ctxy.x17x9. .. 17Ty Ty 0

is a PG with =1
every node X of G in the translation of #;7x;41.G is surrounded by 3 new

nodes —a duplicator D, a binder B; and a synchronizer S— which when

nodes. The reason for such an explosion is that (almost)

given a message, turn to two forwarders. This intractability can probably be
eliminated through a more refined translation, one that does not deliver an
activation signal from a reception to every node of the receiving graph, but
only to some controlling nodes (like our B[P]). But we trace at least part of
the reason to the use of forwarders.

On the other hand, cc have the advantage over our construction of being a
combinatory system for the m-calculus, in the sense that they can be expressed
in m and they form a closed system. Our MIN, is a system external to m, and
furthermore one that i1s not yet studied in depth.

6 Future Work

The work reported here is quite exploratory in nature: we extend a well-known
elegant system (IN) and explore the expressive power of the resulting system.
However, it would be necessary to also study the nature of the system itself. How
far have we strayed from INs? Which of the theoretical results for IN hold in our
system? For example, can one identify simply deadlock-free fragments? Is there
a universal combinatory system for MIN? What are the appropriate behavioral
equalities for MIN?

6.1 Replication and Choice

Two important m-calculus constructors are missing form our consideration, repli-
cation/recursion and choice (sum). These are the constructions that give the
n-calculus full computing power (loops and conditionals). We hope to address
these aspects of the m-calculus in future work.

Replication (the duplication of a process) and choice (the discarding of al-
ternative processes) are similar to Linear Logic (LL) contraction and weakening
respectively, which in the traditional Proof Net theory of LL are implemented as
non-local operations through the duplication and erasure of “boxes”. It would
not be hard to postulate replication and choice in a similar way in this work,
however we would like to preserve the local character of MIN at any price. Recent
developments in the area of optimal lambda reduction (Gonthier et al., 1992)
and sharing graphs (Guerrini et al., 1997) demonstrate how one can present
Proof Nets in a completely local fashion. The interaction of these “structural
boxes” and the blocking “layers” that we use is quite subtle.

Bibliography

M. Fernandez and I. Mackie. Coinductive techniques for operational equivalence
of interaction nets. In Symp. on Logic in Computer Science (LICS’98). 1998.

S. J. Gay. Translating confluent CCS into interaction nets. 1991.

G. Gonthier, M. Abadi, and J.-J. Lévy. Linear logic without boxes. In Logic in
Computer Science (LICS’92), pages 223-234. IEEE Computer Society Press,
Santa Cruz, CA, 1992.

S. Guerrini, S. Martini, and A. Masini. Coherence for sharing proof-nets. Tech-
nical Report TRCS-97-03, University of Pennsylvania, 1997.

K. Honda and N. Yoshida. Combinatory representation of mobile processes. In
Principles of Programming Languages (POPL’94), pages 348-360. Portland,
Oregon, 1994a. ISBN 0-89791-636-0.

K. Honda and N. Yoshida. Replication in concurrent combinators. In
M. Hagiya and J. C. Mitchell, editors, Theoretical Aspects of Computing Sci-
ence (TACS’94), number 789 in LNCS, pages 786-805. Sendai, Japan, 1994b.

Y. Lafont. Interaction nets. In Principles of Programming Languages
(POPL’90), pages 95-108. ACM, San Francisco, CA, 1990.

R. Milner. An action structure for the synchronous 7-calculus. In Z. Esik, editor,
Fundamentals of Computation Theory (FCT’93), number 710 in LNCS, pages
87-105. Szeged, Hungary, 1993.

R. Milner. Pi-nets: a graphical form of w-calculus. In European Symposium on
Programming (ESOP’94), number 788 in LNCS, pages 26-42. 1994.

R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, parts 1
and II. Information and Computation, 100(1):1-77, 1992.

J. Parrow. Interaction diagrams. Nordic Journal of Computing, (2):407-443,
1995. Earlier version appeared in A Decade of Concurrency: Reflections and
Perspectives. REX School and Symposium, J.W. de Bakker, W.-P. de Roever
and G. Rozenberg (ed), June 1993, LNCS 803; and as SICS Research report
R93:06.

N. Yoshida. Graph notation for concurrent combinators. In T. Ito
and A. Yonezawa, editors, Theory and Practice of Parallel Programming

(TPPP’94), number 907 in LNCS, pages 393-412. Sendai, Japan, 1994.

