
Representing the Finite ��calculus in

Multi�Interaction Nets
Concurrency � Interaction � Non�determinism

Vladimir Alexiev�

��� GSB� Department of Computing Science�
University of Alberta� Edmonton AB T�G �H�� Canada

phone ���	
 ��� 	���� fax ���	
 ��� ��
�� email vladimir�cs�ualberta�ca

Abstract� We extend the Interaction Nets of Lafont �����
 with some
non�determinism capabilities� and then show how to implement the �nite
monadic ��calculus in that system�

� Introduction

The ��calculus of Milner et al� ������ is one of the most popular theoretical tools
for the investigation of concurrent computations� Its popularity is due to its con�
ceptual simplicity	 yet great expressive power� However	 similar to the ��calculus	
the ��calculus leaves some of the basic low�level components of computation im�
plicit	 namely the distribution of values and synchronization	 expressed as the
global process of substitution� Uncovering this 
ner computational structure	
and dispensing with the important role that syntactic entities like names play
in ��calculus	 is the goal of this paper�

Interaction Nets �IN� of Lafont ������ are a novel model of parallel compu�
tation	 simple and elegant� Their essential properties as relating to parallelism
are the locality of interaction and the simplicity of the rewriting process� We in�
troduce a version of IN extended with non�determinism �Multi�Interaction Nets�
and translate faithfully the ��calculus to MIN�

Our translation is similar to the ��nets of Milner ������ and the Interaction
Diagrams of Parrow ����
�	 but we represent blocking �synchronization� in a
distributed manner	 without using boxes� We also compare our construction to
the Concurrent Combinators of Honda and Yoshida �����a��

� Interaction Nets and Non�Determinism

Interaction Nets �IN� were introduced by Lafont ������ as a simple and elegant
model of parallel computation	 inspired by Linear Logic�s Proof Nets	 and de�
signed to be useful both as an �abstract� programming language	 and as a useful
intermediate representation�

� Supported by a University of Alberta Dissertation Scholarship�



INs are graphs consisting of nodes �agents� of certain types and undirected
edges connecting them� The points of contact of edges and nodes are called ports
and every node type has a particular signature of ports� In conventional INs
every node type has exactly one principal port �denoted with a bold triangle�	
and every port hosts exactly one edge�

Computation in INs is governed by interaction rules of the form

X�X�

X�

X�

Y�Y�

Y�

Y�

netnode�

node�

Notation �Generic� node types are indicated with boxes� Whole subnets are
indicated with a large dashed boxes� The concrete node types that we will use
predominantly in this paper are indicated with ovals�

The left hand side �LHS� of a rule is a cut � two nodes facing each other with
their principal ports �which we often denote as node� � node��� The right hand
side �RHS� is a net containing any number of nodes	 possibly none� The only
requirement is that the RHS should connect all free ends of the LHS	 leaving no
loose ends�

If the LHS of a rule �a redex � is present in a particular net	 then the LHS
can be removed from the net	 and replaced by �rewritten with� the RHS� For
example	 here are some simple list processing rules �append	 and reverse using
an accumulator��

A

A

A

A

EE

E

E

TTTTTTTT

X

XXX Y

Y

Y

Y

hh

h

h tt

t

t

app

appapp

conscons

cons

cons nilnil

revrevrev

and the reduction corresponding to appending the lists ��� nil� and ��� nil� to
obtain the list ��� �� nil��



1 2

1

2

1

2

TTT

h

h

h

h

hh
t

t

t

t

tt

app

app

cons

cons

cons

cons

conscons

nil

nil

nilnilnil

Interaction Nets are a restricted form of graph rewriting enjoying some nice
properties�

Binary Interaction Only two nodes participate in a single rewriting step�
Simplicity It is easy to apply a rule	 because the application is uniform�
Locality The applicability of a rule is determined by local inspection	 and the

e�ect of a rule is a local modi
cation of the net�

Furthermore	 conventional INs are �trivially� con�uent because of the fol�
lowing properties�

� A redex consists of only two nodes and their connecting edge�
� A node has only one principal port	 therefore can participate in at most one

redex�
� Reduction is completely local in that it only changes a redex	 but leaves the

rest of the net untouched�
� There is only one rule matching a given redex��

Therefore every two redexes are necessarily disjoint	 and no critical pairs are
possible� This	 together with the locality of interaction	 means that the reduction
of a given redex can never preclude the reduction of another redex	 therefore the
two reductions can be done in either order	 or in parallel� This implies a strong
form of con�uence	 the diamond property in single�step reductions�

�N
R�

� �N�

�N�

R�

�
R�

� �Z

R�

�

� If the redex is symmetric �consists of two nodes of the same type
 then the RHS of
the rule must also be symmetric� so that no matter how the rule is instantiated� the
outcome is the same�



Not only all normalizing reduction sequences lead to the same result	 but they
even all have the same length� Every net can evolve in essentially only one way�

��� Non�Determinism

The strong con�uence of conventional INs account to a large extent for their sim�
plicity and attractiveness	 and for some of their deeper theoretical aspects such
as deadlock�freeness of certain syntactically�identi
able fragments� However	 it
also means that IN cannot be used to model and implementnon�deterministic
systems such as concurrent object�oriented systems or the ��calculus� In such
systems an object�agent�process typically can be connected to more than one
other agent	 and the interaction with one of them may well preclude interaction
with others� For example	 consider the process c�a� c�b� c�x�P �� It can reduce to
either c�b� P �a�x� or c�a� P �b�x� which are not equivalent if a and b are di�erent
names�

We therefore introduce an extended version of IN that we callMulti�Interaction
Nets �MIN�	 in which a node may have more than one principal port	 and a port
may have zero or more edges	 if it has been designated as a multiport�

principal
port

normal
port

another
principal

port

principal
multiport

multiport 
another

connection
multiport with
no connections

multiport with
at least one
connection

node� node�

We can represent typical object�oriented notions such as state change like
this�

D� D�

D

D

D

D M� M�

M

M

M

M

S

S

SSS

dddd m
mmm

sss

s

s

� �

get setsetset

varvarvarvarvar

Here var accepts get�set requests from its principal �message� port	 and stores
a private state at its s port� The request nodes get and set have a port d for
the data item and another port m for the next message to the same �object��
�The eraser � and duplicator � are standard IN components�� The evolution of

� See x	 for the ��calculus notation that we use�



a var that has two competing requests �as shown in the RHS of the 
gure� may
depend on the order in which these requests are served�

There are several ways of introducing non�determinism in IN	 which I explore
inmy forthcoming PhD dissertation� For this paper we will use INs extended with
multiports as introduced above �INMP�	 and will also allow multiple principal
ports per node �INMPP�� Here is an example of an INMPP�

TTTTTTTT

X

X

X

X

X

X

X

X �� ��

orororor tt

tt

tt

tt

Capturing INMPP in INMP As will be seen later	 we 
nd it very convenient to
use multiple principal ports in our translation of the ��calculus	 because of the
ability of INMPP have a node be attentive towards several ports simultaneously�
We note brie�y that it is in fact possible to reduce INMPP to INMP	 by splitting
a node with more than one principal port in parts� For simplicity	 we show here
the case of two principal ports� Let a be a node type with two principal ports y
and z and let its reductions with di�erent node types bi be given by the rules

X

X

X

X Y

Y

Y

Y

Z

Z

Z

Z

xx

yy zz

aa

bibi

n�i n�i

Then we translate a�X�Y�Z� to the following con
guration

X

Y Z

x

y
z

a�

a� a�



where the auxiliary markers a� and a� are governed by the rules

AAAA

XXXX

Y

Y

Y

Y

Y

Y

Y

Y

ZZZZ

xx

y z

a�a�a�

a�i

a�i a�

a�i

a�i

bibi

n�i n�i

By the above construction	 we could limit our version of IN to INMP only �not
INMPP�� But for simplicity	 we will use INMPP too	 and we call the combination
MIN�INMP�INMPP�

��� Special Rule Selection

Rule selection in conventional IN is quite simple� only one rule may apply to a re�
dex	 and a node may be involved in only one redex� Rule selection in MIN is more
complicated� First a principal port of a node is chosen non�deterministically� If
it is a multiport then one of its edges is chosen non�deterministically� If the other
end of the edge is a principal port	 then there may be several rules matching the
redex�

In order to accommodate the need for special clean�up rules	 we allow to fur�
ther qualify the rules by constraints on the current arities of ports�� We consider
the following constraints �see the 
gure in the beginning of x�����

� no constraint � zero edges� � at least one edge�

The rule satisfying the largest set of most�speci
c constraints is chosen �the
speci
city ordering being � � �� � � �g�� We will use only rule sets that are
well�ordered by speci
city� For an example of the use of such special rules	 see
x����

A MIN rule can only specify the evolution of a 
nite number of edges	 but
the total number of edges on the LHS is not bound a�priori	 if the LHS contains
multiports� Therefore	 it is implied that any edges not speci
cally mentioned in
the LHS are transferred en�masse to ports of the same name on the RHS� For
example	 here the edge X�a�x of the LHS is explicitly transferred to X�b��z of
the RHS� In addition	 all other potential edges connected to a�x are transferred
to a��x	 those of a�y to a��y	 and those of b�z to b��z�

� Not necessarily the principal ports involved in the cut�
� Obviously the principal ports involved in the cut have at least one edge� so the
constraint means �one edge� if it is applied to such a port�



X

X

xx

yy z

z

a a�

b

b�

� The ��calculus

In this paper we consider the 
nite part of the monadic ��calculus �i�e� no choice
and replication��� Let a� b� � � � � x� y� � � � stand for channel names� Then processes
P�Q� � � � are de
ned inductively as follows

Zero � is the empty �do�nothing� process�
Parallel Composition P�Q behaves as both P and Q	 possibly interacting

with each other�
Output Pre�x c�v�P � sends the value v along the channel c	 then behaves as

the process P �
Input Pre�x c�x�P receives a value from channel c	 then behaves as the process

P 	 wherein the value is substituted for x�
Hiding	Restriction �c�P is just like P 	 but the channel c is hidden� no values

can be sent�received over that channel by other processes�

In c�v and c�v	 c is in subject position	 while v is in object position� We will
sometimes denote a pre
x as �� We abbreviate ��� to simply �� Free and bound
names are de
ned as usual �x becomes bound in c�x�P and �x�P �� a��x��P is
used as an abbreviation for �x�a�x�P �


�� Structural Congruence

A natural way to simplify the presentation of the reduction system of the ��
calculus �see below� is to introduce structural rules which describe equivalence
classes of process terms that are essentially the same	 and only di�er in their
syntactical presentation� 	 is the smallest congruence satisfying the rules below�

�� P 	 P �y�x�� if x is not free in P and y is fresh �	 renaming�� We will
tacitly assume for the rest of this paper that every bound name is di�erent
�renamed apart� from every free name and from all other bound names�

� Please note that e�g� Honda and Yoshida �����a
 take a similar approach� and later
develop their combinatory system to accommodate these elements in �Honda and
Yoshida� ����b
�

� We use this Occam�like notation instead of the conventional notation �chxi�P � mainly
because it is more clear in the typescript�

� Here �y�x� denotes the substitution of y for x�



�� �� P 	 P �P�Q	 Q�P � �P�Q�� R	 P� �Q�R�� the parallel constructor makes
a commutative monoid�

�� � 	 �x��� there is nothing to hide in ��
�� �x�P�Q 	 �x��P�Q� if x does not occur in Q� the scope of a restriction can

be extended if there�s nothing to hide� This also implies that Q 	 �x�Q given
the same proviso�


� �x��y�P 	 �y��x�P �

By the last three rules	 we can assume w�l�o�g� that all restrictions are pushed
out to the top level�


�� Reduction Rules

We use an �unlabeled� reduction system for the ��calculus	 because we 
nd it
more natural for our correctness proofs below than a labeled transition system�
It is the smallest relation � closed under the rules

Comm a�x�P� a�c�Q � P �c�x�� Q� this rule	 analogous to 
�reduction	 is the
essence of the ��calculus� It allows a process to communicate a name to
another process�

Struc If P � Q and P 	 P �	 Q 	 Q� then P � � Q�� This incorporates the
structural congruence into the reduction relation�

Par If P � Q then P�R� Q�R� adding a parallel component does not decrease
the possibilities for reduction�

Res If P � Q then �x�P � �x�Q� restriction does not decrease the possibilities
for reduction of the internal process�

Multi�step reduction is de
ned as 

def
�

�
��	�


�
 The Many Roles of Pre�x

The Comm rule plays several important roles that we would like to implement
in IN as independently as possible�

Value passing The value c is delivered from the sender to the receiver process�
Value distribution If the input variable x appears in several places in the

receiver P 	 the value c should be delivered to all these points�
Synchronization Reduction is not a congruence over pre
x	 so the pre
xed

process�es� cannot perform any other action before the outer communication
is complete�

The pre
x blocks any possible interactions inside the pre
xed process	 as well as
interactions between it and other processes� Synchronization in the ��calculus is
global with respect to the pre
xed process� We will see below that our translation
into IN implements synchronization in a distributed manner�



� Representing the ��calculus in MIN

Our motivation for attempting to represent the ��calculus in MIN is threefold�

� To test the expressive power of an extension of IN that we found interesting
for other purposes as well �e�g� concurrent object�oriented programming��

� To represent explicitly some aspects of the dynamics of computation of the
��calculus that are left implicit by the standard formulations �substitution��

� To capture the mobility features of the ��calculus in a 
nitary �name�free	
combinatory� framework�

We 
rst introduce some basic building blocks for representing the ��calculus �we
call the particular MIN instance MIN��	 then give a translation ����� from � to
MIN�	 and 
nally sketch some correctness results about the translation�

��� MIN� Nodes

The node types of MIN� are classi
ed as primary �those that can appear in
the translation ��P �� of a process� and auxiliary �used only during intermediate
computation steps�� The main nodes are�

:U: :U:

D�

�
D�

D�

�
D� U�c�xc�x

c

c	y

d�

d�

i oo

p�x p	y

r
r

ss

t	p

uu

z�c z�p

bc p u

A brief description of the main nodes follows�

channel c corresponds to a ��calculus channel name� Its output multiport o con�
nects it to all channels z for which c is an output object� The send multiport
s connects it to all nodes x that are output objects of c� The committed mul�
tiport c is similar to s	 but it holds only output objects x for which we are
certain that they are ready to be sent� The receive multiport r connects c to
all nodes y that are input objects of c�

placeholder p 
 corresponds to the bound variable in a ��calculus input pre
x	 i�e�
it is the input object of some node� Its ports are similar to the ports of c	 but
you will notice that its only principal port is input i	 because p cannot interact
until it has been instantiated with a channel in a communication� It also has
an unblock port u that sends a signal to certain blocking �synchronization�
machinery that is dependent on the pre
x�

� This term comes from �Parrow� ����
�



blocker b is part of the synchronization machinery� It will shortcut its data ports
when it receives an unblocking signal on its principal port�

unblocker u will also shortcut its data ports d� and d� when the time is right	
and will unblock all blockers that are attached to its u port�

We also use auxiliary nodes of the following types

b
b

b

cc oo
rr

ss

u

c� c� u�

u�

They are mostly used as intermediate states in the evolution of main nodes �and
thus serve to sequentialize this evolution��

��� Labels

Instead of denoting channel and placeholder nodes with their node types c and
p	 we label the nodes with the ��calculus names that they correspond to	 e�g� we
draw a c node labeled a as an oval containing a �the port types will always allow
us to determine the node type unambiguously�	 and denote it in text as c�a�� If
a name is hidden in a ��calculus process	 we place the label in parentheses	 e�g�
p��x�� or no label at all� �For brevity	 we don�t always parenthesize placeholder
labels	 which should always be considered hidden�� These labels have several
uses�

� As a convenience for the reader�
� The incremental building of a net during the translation process uses the

labels to decide which nodes to merge�
� They make 
ner distinctions between nets	 so that e�g� the nets correspond�

ing to a�b and a�c are considered di�erent	 even though they are graphically
the same�

However	 the labels play no role in the MIN� reduction process�

De�nition � �Labeled MIN� isomorphism
� Two MIN� M and N are
called isomorphic� M 
 N � if there is a graph isomorphism between them that
also respects the node labels �hidden�placeholder labels are excluded from this
distinction��

��
 The Translation

We de
ne a translation function ������� ��MIN� from ��calculus processes P to
MIN� nets N �i�e� N � ��P ���� Simultaneously with it we de
ne a set of blocking
points B��P ��	 which are ��the middles of�� edges of N � As explained in x���	 c



nodes of ��P �� bear labels throughout the translation process	 but these labels do
not in�uence the MIN� reduction process� Let n�N � and e�N � denote the nodes
and edges of N 	 and n�M � � n�N � denotes amalgamated sum	 where nodes in
n�M � and n�N � with the same label are identi
ed� We also write N � �n� e� for
n � n�N �	 e � e�N ��

We de
ne the translation by induction on the structure of P �x��	 but make
a distinction between atoms ��� and proper pre
xes ��P �

Zero ����� � ��� �� and B����� � ��

Parallel Composition ��P�Q�� � �n��P �� � n��Q��� e��P �� � e��Q��� and B��P�Q�� �
B��P ���B��Q��� Nodes of the same label are identi
ed	 and their edge sets are
merged	 but no edges are identi
ed�

Hiding	restriction ���c�P �� � ��P ��nc ���P ��nc is the same as ��P ��	 but the label
of node c �if any� is erased�parenthesized�� B���c�P �� � B��P ���

Input Atom ��a�x���� �fc�a�� p��x��g� fa�r�x�ig� �channel	 placeholder	 and an
edge connecting their r and i ports respectively�� B��a�x�� � fa�r�x�ig�

Output Atom ��a�x����� �fc�a�� c�x�g� fa�s�x�og� �two channels and an edge con�
necting their s and o ports�� B��a�x�� � fa�s�x�og�

Input Pre�x ��a�p�Q�� is de
ned from ��Q�� thus �see the right half of the 
gure
below����

�� If a channel node labeled a is not present in ��Q��	 a new channel a is
added�

�� If a channel node labeled p is not present in ��Q��	 a new placeholder p is
added� Otherwise	 p�s type is demoted from channel to placeholder� �In
this latter case	 e�ectively the placeholder p is merged to a channel in
��Q��	 in contrast to the Parallel Composition case above��

�� A new edge a�r�p�i is added�

�� Blockers b are inserted in every edge of B��Q�� and their principal ports
are connected to p�u�

More formally	n��a�p�Q�� � �n��Q���c�a��p�nnp�
S

e�B

Q�� be where nnnp is like
n	 but with the type of node p demoted from channel to placeholder and its
label erased� e��a�p�Q�� � e��Q���fa�r�p�ig�

S
e��n��n���B

Q��fp�u�be � be �d��n�� be �d��n�g�

Finally	 B��a�p�P �� � fa�r�p�ig	 and the fact that it is a singleton set is the
key to the polynomial nature of our translation�

	 More precisely� ��a�x�P �� where P � ��
�
 More precisely� ��a�x�P �� where P � ��
�� Please imagine that a and c can potentially be immersed in ��P ��� and a and p can be

immersed in ��Q���



d�

d�

i

o

rs

uu

��P�� ��Q��

a

bbbbc

pu

Output Pre�x ��a�c�P �� is de
ned similarly	 but an extra node u is added	 be�
cause c may be the output subject of more than one pre
x �see the left half
of the 
gure��
�� New channels a and c are added if not present in ��P ���
�� An unblocker u is added�
�� New edges a�s�u�d� and u�d��c�o are added�
�� Blockers b are inserted in every edge of B��P �� and their principal ports

are connected to u�
More formally	 n��a�c�P �� � �n��P �� � c�a� � c � u� �

S
e�B

P �� be� e��a�c�P �� �

e��P ��� fa�s�u�d�� c�o�u�d�g �
S

e��n��n���B

P ��fu�u�be � be �d��n�� be �d��n�g�

B��a�c�P �� � fa�s�u�d�g

Proposition � �Complexity of the Translation
� The size of ��P �� �number
of nodes plus number of edges� is linear in the size of P �number of pre�xes��

Proof� A simple structural induction	 based on the fact that jB��P ��j is equal to
the number of top�level parallel components of P � ut

��� Structural Correspondence

Notation We call nets N � ��P �� primary	 and nets that don�t correspond to
a process auxiliary� �We only consider auxiliary nets that are the reducts of
primary nets in this paper��

We now check statically that our translation neither identi
es processes that
are not structurally equivalent	 nor fails to identify equivalent processes�

Theorem 
� ��P ��
 ��Q�� i	 P 	 Q �
 as per De�nition 
��

Proof� If Case analysis on the de
nition of structural equivalence in x����

�� 	�renaming� Since the bound labels of P are removed in ��P ��	 we have ��P ��

��P �y�x��� for any name x not free in P �

�� Monoidal structure of parallel composition� Easy	 due to ����� � ��� �� and
the associativity and commutativity of amalgamated sum n��n� and union
e� � e��



�� � 
� are obvious�

Only if We build an inverse translation ��N �� and we prove that it preserves
structural congruence �see below�� ut

��� Inverse Translation

We de
ne an inverse translation �� � ���MIN� �� ��� from primary nets to a
representative of the structural equivalence class of the original process	 ��N ��� P �
It breaks a composite net into parallel components	 strips pre
xes and associated
blocking machinery	 and works recursively�

As a preliminary step	 we take care of hidden nodes� ��N ��� �c� � � � cn���N ���
where c� � � � cn are all the c nodes of N with hidden labels	 and N � is like N but
with these labels un�hidden�

We are careful to de
ne ��N �� to be deterministic	 so we 
rst 
nd exhaustively
all parallel components� A blocking region b of a main net N is a minimal non�
empty set of directed edges e � e�N � closed under a �principal domination�
condition� if y�q�x�p � e is an edge of N that comes into the single principal
port p of node x�� then x�pi�yi�qi � e for all other edges of x� By minimality	 a
blocking region b either consists of one edge both ends of which are not single�
principal ports	 or is a tree of edges related by principal domination� In other
words	 b cannot contain unrelated edges�

Lemma �� Two blocking regions b� and b� are either disjoint or one is a subset
of the other�

Proof� Assume the opposite� Since b� and b� are trees� by following non�shared
edges we can reach a shared edge� The source node x of that shared edge must
have two incoming non�shared edges� one in b� and the other in b�� But this is
impossible� because x cannot have multiple principal ports� nor principal multi�
ports� ut

Lemma �� Let M be the subgraph of N generated by a blocking region b of N
�M contains all edges in b and their adjacent nodes�� Then M is a main net�

Proof� Follows from the principal domination closeness of b� after observing that
all edges of ��P �� in ��a�c�P �� and ��a�p�P �� can be reached from a�s�u�d� and
a�r�p�i respectively �see the �gure in x����� This observation can be proved easily
by induction on the structure of ��P ��� ut

Let B � fb�� � � � � bng be the set of all maximal blocking regions of N � By
lemma � and maximality	 they partition the edges of N � e�N � � b� � � � �� bn�
By lemma 
	 they all are main nets� bi � ��Ni��� So we de
ne the 
rst step of our
inverse translation �breaking into parallel components� thus� if N has more than
one maximal blocking regions fb�� � � � � bng	 then

��N ��
def
� ��N���� � � � � ��Nn��

�� This means that x is one of p�b�u but not c� since c has several principal ports�



where Ni is the subgraph of N generated by bi�

To de
ne the inverse translation of a maximal ��main�� blocking region b	
we have to consider two cases�

�� b consists of a single edge� The edge can be c�a��s�c�o or c�a��r�p�i� Then

��b��
def
� a�c or ��b��

def
� a�p respectively�

�� b is a tree of several edges� Then it has a single root edge	 for otherwise the
root edges would be unrelated� Furthermore	 b must correspond to the left
or the right half of the 
gure in x���	 because it is main �subgraph of a main
net N � ��R����

�a� The root edge is c�a��s�u�d�� Then ��b��
def
� a�c���P��� where P� is the subnet

connected to the b nodes �labeled ��P �� in the 
gure��

�b� The root edge is c�a��r�p�i� Then ��b��
def
� a�p���Q�

�� Q
�
��� where Q� is the

subnet connected to the b nodes �labeled ��Q�� in the 
gure�	 Q� are
optional subtrees of b attached to the s and r ports of p	 and Q� is like
��Q��	 but with the type of p promoted to c�

The proof of Theorem � is completed by the following lemma�

Lemma �� If two main nets are isomorphic� M 
 N � then ��M ��	��N ���

Proof� By isomorphism� the blocking regions of M and N are also isomorphic�
Then by the determinsm of �� � ��� it follows that ��M �� and ��N �� are essentially
the same� up to 	�renaming of hidden labels� ut

��� Example

In order to clarify our translation	 we give a substantial example	 the Honda�
Tokoro construction� It implements polyadic �n�ary� blocking pre
x in terms
of monadic ���ary� output atoms and monadic input blocking pre
x� It is also
known as the zipper construction� For n � �	 the construction is as follows�

z��x�x���P � �m�z�m�m�p���p��x��m�p���p��x�� P ��

z��y�y���Q � �c�c��z�n��n�c�� c��y���n�c�� c��y��Q��

The translation of ��z��x�x���P� z��y�y���Q�� is on the left side of the 
gure below�
Note that we don�t need any u nodes since there are no output pre
xes�



s/r

s/r

s/r

s/r

r

r

r

r

s

s

s

s

u

u

u

u

u

��P�� ��Q��

b

b

bb

b

b

b

b

bb

b

c�

c�

m

n

p�

p�

x�

x�

y�

y�

z

s/r

s/r

s/r

s/r

r

r

r

r
s

s

s

s

u

u

u

u

��P�� ��Q��

b

bb

b

bb

c�

c�

m n

p�

p�

x�

x�

y�

y�

z

Apart from the blocking machinery needed to sequentialize the interactions
pi � ci �i � �� �� on the shared channel m � n	 the construction is symmetric�

Unnecessary Blocking Due to the linear nature of ��calculus terms	 one is
forced to introduce more blocks than are really necessary� Let�s consider the
dependency relation � between pre
xes in a process P 	 which is the transitive
closure of the following rules�

�� If ��Q is a subterm of P then � � �� for every �� occurring in Q �blocking�
explicit synchronization��

�� a�x � fb�x� x�b� x�bg�� for those of the pre
xes that occur in P �provision�
data�dependency�based synchronization��

�� Here � � S means � � �� for every �� � S�



Since the ��calculus only allows disjoint or properly nested scopes	 but not over�
lapping scopes	 the structure of � is a directed forest� For example	 it is impos�
sible to have �� � � and �� � � without also having �� � �� or �� � ��� Fur�
thermore	 since the scopes of input pre
x and synchronization are confounded	
� subsumes ��

There are no such limitations in our MIN� representation	 which allows us to
minimize the use of blocks� For example	 the only blocks that are necessary in the
Honda�Tokoro construction are blocks that enforce m�p� � m�p�	 n�c� � n�c�	
p��x� � P and c��y� � Q	 therefore we can easily remove 
 blocks� �See the right
part of the 
gure above��

��� Send	Receive

We now describe the interaction rules that govern MIN�� Communication is
implemented in three discrete steps	 corresponding to the di�erent roles of pre
x
that we mentioned in x����

Send	Receive A pair of s�r links of a channel c is chosen non�deterministically	
and the objects at the ends of these links �say x in a�x and y in a�y� are put
in contact�

Input	Output �Link Migration
 All links of the placeholder p are trans�
ferred to the channel c that is instantiating it�

Unblocking The processes that were blocked by the two pre
xes �e�g� P and
Q in a�p�P and a�c�Q� are unblocked and can interact further�

In the 
rst step	 a channel c that has active�� nodes attached to both its s

and r ports	 shortcuts them in order to make it possible for them to interact�
MIN� does not give us easy means to secure two active nodes atomically� The
easiest would be to employ a ternary rule��

rr
ss

cc

xx

y

y

However	 IN and MIN� allow only binary rules�
Therefore we have to do it in two separate sub�steps	 which may be distant

in time� In the 
rst sub�step channel c secures an active node from port s and
stores it in the set of committed output objects on port c� In the second sub�step
it puts an active node from port r in contact with an edge from port c� Both
edges are selected non�deterministically�

X

X

cccc
rrrr

ssss

cccc

xx yy

�� Linked to c through their principal port�
�� Remember that boxes denote generic node types�



The correctness of this switcheroo depends on the following

Lemma � �Monotonicity of Activation
�Once a node on c�s becomes active�
it cannot become inactive until it is transferred to c�c� and later detached from c

by the above rule�

Proof� Examination of the possible node types and applicable rules later in this
section� The possible nodes on c�s in a translation ��P �� are u�d� �active�	 c�o
�active� and b �inactive�� The rules that a�ect c�s are immigration of links from
p�s �see x���� which are again nodes of the same types	 and the removal of b
during unblocking �see x���� which exposes an active u�d� or c�o� Once a link
is active	 it can only be transferred to c�c where it will remain active until it is
detached by the second rule above� ut

��� Input	Output �Link Migration


The second step of a communication a�c�P� a�p�Q is the merging of the output
object node c and the input object node p	 corresponding to the ��calculus
substitution Q�c�p� �c is instantiated for p�� In MIN�	 this entails a migration
of all edges of p to c� Since c may be output object of more than one output
pre
x	 if it keeps its type c during the immigration process	 it may be subjected
to another send�receive interaction while the 
rst one is in progress� Then c

may immigrate links from another placeholder p�	 and therefore will interlace
link immigration from two di�erent placeholders� Such interlaced immigration
increases the parallelism of the implementation	 and should therefore be seen as
a positive aspect� However	 in this paper we prefer to disallow it	 in order to
simplify the proof of correctness of our translation� To this end	 c changes its
type to c� throughout the immigration process� c� is committed to that process
and cannot perform any other interaction until it is completed�

O

O

R

R

S

S

iiiiiiii

o

o

o

o

o

o

r

r

r

r

s

s

s

s

c c�c�c�c�c�c�c�

pppppppp

Here we use arity constraints �see x���� to guide the migration process� After mi�
gration is 
nished	 the placeholder p becomes an unblocker u� and c becomesc�	
waiting for a signal from u� that unblocking is completed �described in x�����



b

b

c

c

i

o

o

o

r

r

r

s

s

s

u

u

c� c�

p u�

Lemma � �Con�uence of Migration
� 
� The rules of this subsection are
con
uent �as formulated at the end of x��� �� There is no outside interference�
i�e� after the initial interaction c � p and until the �nal interaction c� � p� no
other nodes but the ones above can participate�

Proof� Simple� Both c� and p have a single principal port	 and any two link
migration rules commute� ut

��� Blocking and Unblocking

The send�receive rules of x��� are insensitive wrt the type of the object	 therefore
they apply equally well to c � p �corresponding to an output atom a�c interacting
with an input a�p�Q�	 and to u � p �corresponding to an output pre
x a�c�P
interacting with an input a�p�Q���� The case c � p was described above in x����
In the case u � p	 u migrates all its blocking links to p and then disappears�

D�

D�

U

U

d�d�d�

d�

i
iii

uu

u

u

u

p

ppp

uuu

Once this migration is completed	 a c � p redex results	 and the rules of x���
apply�

To complete the communication we must unblock all blockers b controlled
by the pre
x� More speci
cally	 the node u� that was borne by the placeholder
p in x��� should dismiss all the blockers that it controls�

�� Note that if we limit our consideration to the � �asynchronous �
 calculus where
output pre�x is not allowed� then we don�t need u�



B

B

D�D�D�D� D�D�D�D�

b
b

b

b cc

o

o
rr

ss

uuu

bb

cc�u�u�u�

u�

u�

At the end of the unblocking process �directed by the arity constraint on the
principal port�	 u� turns into u� and signals c� that the communication has been
completed�

Lemma � �Con�uence of Unblocking
� 
� The rules of this subsection are
con
uent� �� There is no outside interference�

Proof� Simple examination� Only u� has a principal multiport	 but the order in
which it dismisses b nodes is irrelevant� ut

The lemmas in this and the previous subsection mean that after the non�
deterministic selection of a c�o link	 computation can proceed in essentially only
one way	 giving us the following aggregate result�

Lemma ��� In the �gure below �with any number of b nodes attached to u and
p� and any number of O� S�R links�� the MIN� on the LHS can reduce in only
one way� to the MIN� on the RHS� ut

+

B��B��

B�nB�n

B��B��

B�nB�n

O

O

R

R

S

S

c

c

d�

d�

i
o

o

o

r

r

r

s

s

s

u

u

b

b

c

c

p

u

This completes the description of the MIN� interaction rules�

���� Operational Correspondence

We now set out to prove that our translation serves its purpose of faithfully
modeling the ��calculus� Completeness is easy	 as is to be expected of any decent
implementation encoding�



Theorem �� �Completeness
� For every single�step process reduction P �
P � there exists a corresponding multi�step net reduction ��P ��
 ��P ����

�P � �P �

���P ��
�

����
 ���P ���
�

Proof� Case analysis on the reduction rules in x���� For Comm	we use Lemma���
starting from the net in x���	 after the s and r links on a are committed	 there is
a �unique� reduction which removes all b and migrates the links of p to c	 which
is the same as ��P�Q�c�p���� For Struc	 we need Theorem �� Par and Res �top�level
name restriction� do not decrease the possibilities for MIN� reduction� ut

As is usual with implementation encodings	 Soundness presents a greater
challenge� We have gone to great lengths to make the reduction process as de�
terministic as possible� For example in x��� we could increase the degree of
parallelism by leaving c with the same type throughout the process	 instead of
sequentializing it using c� and c�� However	 until some general results about par�
tial con�uence of MINs are available �or coinductive techniques for IN are better
understood	 �Fern andez and Mackie	 ������	 we prefer to simplify the reduction
process in order to obtain more easily our correspondence result�

We state the following

Theorem �� �Soundness
� �a� For every multi�step reduction ��P ��
 N there
exists an extension N 
 ��P ��� such that P 
 P ��

�P �������������������
 �P �

���P ��
�

�����
 �N �����
�

 ���P ���

�

�b� For every ��P ��
�

 ��P ��� holds P 
 P ��

We will explain the
�

 symbol below�

Note that ����b� alone is not su!cient to guarantee well�behavedness	 because
it leaves the possibility of bad reductions from ��P �� that never lead to a primary
net�

Unless we impose some restrictive reduction strategies on net reduction	 we
cannot prove a similar result for single�step process reduction� The reason is
that we are implementing an �atomic� reduction relation with a completely
distributed system� ��P �� can start reducing several independent reductions of P
simultaneously �or interleaving them�	 and none of the intermediate nets will be



primary� The theorem states however that no matter how long this net reduction
is	 it can always be completed to a primary net ��P ��� such that P 
 P ��

In order to prove the theorem	 we explore the space of reducts of ��P �� and its
con�uence properties� According to x���	 the possible redexes of ��P �� are of the
form c�s � c�o	 c�s � u�d� and c�r � p�i� According to x���	 the former two cause
c�o�u�d� to be transferred �committed� from c�s to c�c	 at which point the latter
redex becomes applicable� We will call c nodes with something on c�c committed
channels�

A committed channel with a p�i on its c�r port may choose to shortcut one
of its commitments with p�i	 and become non�committed if it has no more com�
mitments	 or stay committed� Lemma ���� applies to the redex formed of the
commitment and p�i	 so we may reduce it immediately to the RHS� This will
unblock the subordinate processes of c and p �if any� as well	 and leave us with
a an almost primary net	 one that may eventually contain committed channels�

Thus	 it turns out that the structure of the reduct space is quite simple�

� It may contain channels in various stages of commitment�
� It may contain parts that are in the process of link migration and unblocking	

but by con�uence we can complete the process in essentially only one way�

Notation Given a net M 	 its completion N is obtained by 
ring all possible
rules of x��� and x���� We denote this as M � N � Lemma �� guarantees that
the completion is unique�

There is a little technical problem with commitment� Take the simple net
corresponding to c�v� In that net v is attached to c�s� The commitment rule
may move v to c�c	 but this is not a primary net anymore� And since there is
no possibility for communication	 it cannot evolve at all	 and will remain non�
primary� We therefore consider backing up commitments�

Notation Given a net M 	 its uncommitment N is obtained by moving any
links from c�c to c�s	 for all channels c� We denote this M � N � We de
ne
�

 �
�� This is an operation external to MIN� � a net itself can never back up
a commitment�

Neither � nor � make any decisions� The former forges ahead completing all
communications that have been committed	 the latter removes commitments to
allow us to evaluate what we have�

As for ����b�	 we can prove it by tracing where commitments are consumed	
completing at these checkpoints	 and relating the result to single�step process
reductions�

	 Related Work

The only work which deals with an application of MIN to a process calculus that
we are aware of is the unpublished paper �Gay	 ������ It translates a con�uent
fragment of CCS into INs� The restriction to con�uence is not arbitrary	 it is
due to the essential con�uence of conventional IN �see x�����

�� Or an analogous lemma without u� and a direct c � p cut instead�



��� ��nets and Interaction Diagrams

Since the very inception of the ��calculus	 Flow Graphs were sometimes used to
represent it graphically �Milner et al�	 ������ More recently	 two other graphical
formalisms were introduced	 ��nets �Milner	 ����	 ����� and Interaction Dia�
grams �Parrow	 ���
�� Our translation is quite similar to these constructions	
but we also implement synchronization in a distributed manner	 only using local
interaction� Our construction is more similar to INs because nodes have separate
ports and we use only dyadic interaction�

These formalisms give additional insights into the 
ner computational struc�
ture of the ��calculus	 but still leave some of the computational structure im�
plicit and use names essentially� Namely	 they represent pre
x through the use
of boxes �non�local computation elements�� Nodes bear the names�numbers of
the ��calculus names they represent	 and communication manipulates these
names�numbers �at runtime��

�Parrow	 ���
	 sec� ��� suggests that synchronization may be implemented
locally by increasing the arities of every channel	 but unfortunately the sketch
given appears to be incorrect �or correct for only a limited setting�� The author
proposes to implement a�x�P by adding a control channel b to every output
pre
x d�y appearing in P 	 and making a�x instantiate these channels when it
reduces� Input pre
xes d�y also get an auxiliary channel	 but it is not �hooked
up� to a�x	 its purpose only being to match the control channel of d�y� This in�
deed stops internal communications of d�y	 but it does not stop communications
with the outside of P � Therefore the construction only works if all subjects in P
are private channels� Nor will it be correct to block all interactions on d	 because
in a�x��d�y� d�y�� d�z� d�z	 the pre
xes d��y must wait	 but d��z may proceed�

��� Concurrent Combinators

More recent is the work on Concurrent Combinators �cc� �Honda and Yoshida	
����a	b�	 which �analyzes away� the pre
x constructions of ��calculus �input	
output and replication pre
x� and represents all of their expressive power in a

nite system of atomic combinators� This work does the same for the foundations
of concurrent computation as the work of Curry et al� does for the foundations
of sequential functional computation� A graph representation of the same system
is developed in �Yoshida	 ����� and is named Process Graphs �PG��

cc gave us a big inspiration for the present work� They can be seen as a dual
graph representation of our construction� For example	 where MIN� represents
a�b as two nodes a	 b and a connecting edge	 cc represents the same process as
onemessage nodeM �a� b� with two links a	 b� However	 we perceive the following
shortcomings of cc and try to address them in this work�

� cc are more complicated since they use �aggregate� nodes	 i�e� nodes corre�
sponding to a con
guration of ��calculus channels� For example	 they have
a node S�u� v� w� corresponding to u�x�v�y�w�y� The genesis of the combi�
nators and the corresponding rules is not obvious	 and the proof that the



set of combinators is closed wrt process constructors is highly non�trivial� In
contrast	 our �main� node types correspond directly to ��calculus channels
and some blocking machinery	 and our rules come naturally�

� cc are inspired by combinatory term rewriting rather than graph rewrit�
ing� As a consequence	 shortcut edges are not allowed in the RHS of rules�
For example	 the typical IN rule corresponding to a 
rst�order rewriting
"��v�b� e� � b�a�v� is not allowed in cc�

@ B

B

EE

TT

VV

�

� Therefore one is forced to use forwarders whose role is purely bureaucratic�
to disappear when a message arrives at their primary port	 connecting it
to their auxiliary port� Notwithstanding their trivial nature	 e�ort has to
be expended for their bookkeeping� Furthermore	 one doesn�t always have a
term reduce to the �expected� term	 but has to be content with a reduction
up to a certain simulation relation � that e�aces forwarders �see e�g� �Honda
and Yoshida	 ����a	 Theorem ������

� The translation of ��calculus into cc is asymmetric	 using only one construc�
tor �the message� and several destructors that come from the input pre
x�
The use of forwarders only makes this asymmetry stronger� We believe that
a large part of the complexity of the translation can be attributed to this
property	 and that a more symmetric translation results in a simpler	 or at
least more natural	 translation�

� The translation from ��calculus to cc is not uniform in that ��P�Q�� intro�
duces some extra machinery �a duplicator D whose role is to multiplex an
unblocking signal to the two components�	 and ����� �� ��

� The translation can be exponential� For example	 the translation of

c�x��x��x�� � � �xn���xn�xn�v

is a PG with �n����
�

nodes� The reason for such an explosion is that �almost�
every node X of G in the translation of xi�xi���G is surrounded by � new
nodes #a duplicator D	 a binder Bl and a synchronizer S# which when
given a message	 turn to two forwarders� This intractability can probably be
eliminated through a more re
ned translation	 one that does not deliver an
activation signal from a reception to every node of the receiving graph	 but
only to some controlling nodes �like our B��P ���� But we trace at least part of
the reason to the use of forwarders�



On the other hand	 cc have the advantage over our construction of being a
combinatory system for the ��calculus	 in the sense that they can be expressed
in � and they form a closed system� Our MIN� is a system external to �	 and
furthermore one that is not yet studied in depth�


 Future Work

The work reported here is quite exploratory in nature� we extend a well�known
elegant system �IN� and explore the expressive power of the resulting system�
However	 it would be necessary to also study the nature of the system itself� How
far have we strayed from INs� Which of the theoretical results for IN hold in our
system� For example	 can one identify simply deadlock�free fragments� Is there
a universal combinatory system for MIN� What are the appropriate behavioral
equalities for MIN�

��� Replication and Choice

Two important ��calculus constructors are missing form our consideration	 repli�
cation�recursion and choice �sum�� These are the constructions that give the
��calculus full computing power �loops and conditionals�� We hope to address
these aspects of the ��calculus in future work�

Replication �the duplication of a process� and choice �the discarding of al�
ternative processes� are similar to Linear Logic �LL� contraction and weakening
respectively	 which in the traditional Proof Net theory of LL are implemented as
non�local operations through the duplication and erasure of �boxes�� It would
not be hard to postulate replication and choice in a similar way in this work	
however we would like to preserve the local character of MIN at any price� Recent
developments in the area of optimal lambda reduction �Gonthier et al�	 �����
and sharing graphs �Guerrini et al�	 ����� demonstrate how one can present
Proof Nets in a completely local fashion� The interaction of these �structural
boxes� and the blocking �layers� that we use is quite subtle�



Bibliography

M� Fern andez and I� Mackie� Coinductive techniques for operational equivalence
of interaction nets� In Symp� on Logic in Computer Science �LICS����� �����

S� J� Gay� Translating con�uent CCS into interaction nets� �����
G� Gonthier	 M� Abadi	 and J��J� L evy� Linear logic without boxes� In Logic in
Computer Science �LICS����	 pages �������� IEEE Computer Society Press	
Santa Cruz	 CA	 �����

S� Guerrini	 S� Martini	 and A� Masini� Coherence for sharing proof�nets� Tech�
nical Report IRCS������	 University of Pennsylvania	 �����

K� Honda and N� Yoshida� Combinatory representation of mobile processes� In
Principles of Programming Languages �POPL����	 pages �����$�� Portland	
Oregon	 ����a� ISBN ��������$�$���

K� Honda and N� Yoshida� Replication in concurrent combinators� In
M� Hagiya and J� C� Mitchell	 editors	 Theoretical Aspects of Computing Sci�
ence �TACS����	 number ��� in LNCS	 pages ��$���
� Sendai	 Japan	 ����b�

Y� Lafont� Interaction nets� In Principles of Programming Languages
�POPL����	 pages �
����� ACM	 San Francisco	 CA	 �����

R� Milner� An action structure for the synchronous ��calculus� In Z� Esik	 editor	
Fundamentals of Computation Theory �FCT����	 number ��� in LNCS	 pages
�����
� Szeged	 Hungary	 �����

R� Milner� Pi�nets� a graphical form of ��calculus� In European Symposium on
Programming �ESOP����	 number ��� in LNCS	 pages �$���� �����

R� Milner	 J� Parrow	 and D� Walker� A calculus of mobile processes	 parts I
and II� Information and Computation	 �����������	 �����

J� Parrow� Interaction diagrams� Nordic Journal of Computing	 �����������	
���
� Earlier version appeared in A Decade of Concurrency� Re
ections and
Perspectives� REX School and Symposium	 J�W� de Bakker	 W��P� de Roever
and G� Rozenberg �ed�	 June ����	 LNCS ���� and as SICS Research report
R����$�

N� Yoshida� Graph notation for concurrent combinators� In T� Ito
and A� Yonezawa	 editors	 Theory and Practice of Parallel Programming
�TPPP����	 number ��� in LNCS	 pages �������� Sendai	 Japan	 �����


